US009330035B2

a2 United States Patent 10) Patent No.: US 9,330,035 B2
Jebson et al. (45) Date of Patent: May 3, 2016
(54) METHOD AND APPARATUS FOR 2004/0255105 Al 12/2004 Chung et al.
INTERRUPT HANDLING 2005/0259654 Al 11/2005 Faulk, Jr.
2006/0064528 Al 3/2006 Soltis, Jr. et al.
. . 2007/0168574 Al 7/2007 Martinez et al.
(71) Applicant: ARM LIMITED, Cambridge (GB) 2009/0049220 Al 2/2009 Conti et al.
7 1 Anth Jeb Huntingdon (GB) 2009/0157936 Al 6/2009 Goss et al.
nventors: Anthony Jebson, Huntingdon ; .
Richard Roy Grisenthwaite, (Continued)
Cambridge (GB); Michael Alexander
Kennedy, Cambridge (GB); Ian FOREIGN PATENT DOCUMENTS
Michael Caulfield, Cambridge (GB) EP 0511769 11/1992
EP 0 644 489 3/1995
(73) Assignee: ARM Limited, Cambridge (GB) WO WO 2014/188160 11/2014
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 International Search Report and Written Opinion of the International
U.S.C. 154(b) by 386 days. Searching Authority dated Sep. 4, 2014 in PCT/GB2014/051449, 12
pages.
21) Appl. No.: 13/900,777
(21) Appl-No ’ (Continued)
(22) Filed: May 23, 2013
Primary Examiner — Glenn A Auve
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
US 2014/0351472 Al Nov. 27,2014
57 ABSTRACT
(51) Int. CL A data processing device comprises a plurality of system
p 2 p p ty Y
GOG6F 13/24 (2006.01) registers and a set of interrupt handling registers for control-
GO6F 9/48 (2006.01) ling handling of an incoming interrupt. The device also
(52) US.CL includes processing circuitry configured to execute software
CPC GO6F 13/24 (2013.01); GOGF 9/4812 of the plurality of execution levels, and interrupt controller
(2013.01); GO6F 9/4818 (2013.01) circuitry configured to route said incoming interrupts to inter-
58) TField of Classification Search rupt handling software that is configured to run at one of said
(58) p 2 gu
CPC GO6F 13/24; GO6F 9/4812; GOG6F 9/4818; plurality of execution levels, and register access control cir-
GOGF 9/4843 cuitry configured to dynamically control access to at least
See application file for complete search history. some of said interrupt handling registers in dependence upon
one of said plurality of execution levels that said incoming
(56) References Cited interrupt is routed to. The interrupt handling software config-

U.S. PATENT DOCUMENTS

6,665,761 Bl 12/2003 Svenkeson et al.

7,661,105 B2* 2/2010 Wattetal.cc.coono.en. 718/100
2003/0140205 Al 7/2003 Dahan et al.
2004/0187117 Al* 9/2004 Orionetal.ccooo..... 718/100

Interrupt Controller
20
10
hy |-110
G18 Input Routing | __.cmees=""""
Circuitry Circuitry
1007

ured to run at a particular execution level does not have access
to interrupt handling registers for handling a different incom-
ing interrupt that is routed to interrupt handling software that
is configured to run at a more privileged execution level.

20 Claims, 7 Drawing Sheets

30

Processor

Non secure
ELO

EL1

Secure
ELO

------- EL1
Promotion
dueto
incompatible
mode

EL2
EL3

%,
Q.
%
<
Cr
%,
<

System Registers

Acknowledgement register

90

US 9,330,035 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2009/0177826 Al*
2009/0293132 Al*
2010/0049892 Al
2010/0223611 Al
2010/0262737 Al
2011/0016247 Al
2011/0145461 Al
2014/0108691 Al*

7/2009
11/2009
2/2010
9/2010
10/2010
1/2011
6/2011
4/2014

Contietal.cooeeverne 710/262
Henry et al. . .. 726/27
Schwarz et al.

Mabhalingam et al.

Pan et al.

Ohmasa

Zhao et al.

Kennedy et al. 710/269

OTHER PUBLICATIONS

S. Thakkar et al, “The Balance Multiprocessor System” IEEE Micro,
Feb. 1988, pp. 57-69.

P. Zhang et al, “PIL: A Method to Improve Interrupt Latency in
Real-Time Kernels” International Conference on Scalable Comput-
ing and Communications; The Eighth International Conference on
Embedded Computing, Sep. 2009, pp. 75-80.

UK Examination Report issued Oct. 27, 2015 in GB 1516137.5, 2

pages.

* cited by examiner

US 9,330,035 B2

Sheet 1 of 7

May 3, 2016

U.S. Patent

I "Old

sisjsibal jo5uo))

f
0)7

¢4

113

e
8In03s UON

€13

114
013
8inoeg

108880014

I
oe

-
-
-

J9)j05u0) ydnusyu|

08”]

|04U07) $$8908 Jajsifiy

£7349A0 |73
0} panou Buisg

09) U0 paseq

. 8/
Loz Ol
\-0G
0.
09

sJg)sibal weishg

US 9,330,035 B2

Sheet 2 of 7

May 3, 2016

U.S. Patent

om/

apow
€13 a(anedwooul
AL 0} anp
UoIoW0.d
173 173 .
013 e
8In23as UON aInoag
108582014
-
0€

¢ Old

I9)s16a1 JUswabpaimouyoy

slo)sIBay weishg

Aynong Ainoaiy
Bunnoy Induj

001

Jg|jo5uon wdnuia|

US 9,330,035 B2

Sheet 3 of 7

May 3, 2016

U.S. Patent

£13
{13
113 V14
0 0
anoeg | 9inoas uoy
J0SS800id
r.J
0¢

g€ old
J
Oy sigjsibas joau0n)
%
[enLiA S—
) Si9
001 wr
S
0c J8jjoquo) dnussyy

Ve "Old
J
Ov siisibal jou0n)
e
13
V1 13
- Ol
013 073 mmv
anoag | ainoas uoy oL
0z”|
J08S830.d Jajjonuon wdnusiuj

fJ
0c

U.S. Patent

May 3, 2016 Sheet 4 of 7

S10+]

Determine destination
execution level that incoming
interrupt is routed to

Y

S20-,

Dynamically grant access to interrupt
handling software at execution
level that incoming interrupt is routed
to such that interrupt handling
software can handle interrupt

FIG. 4

US 9,330,035 B2

U.S. Patent

May 3, 2016

Sheet S of 7

US 9,330,035 B2

Receive incoming
interrupt

-S30

\

Detect current execution
mode of processor

-S40

Route incoming interrupt to
intended interrupt handler

H
S60

Is incoming
interrupt intended for

interrupt handler running in a different

execution mode to current
execution mode ?

FIG. 5

S50

Route incoming interrupt
to interrupt handler running
at EL3 for handling

H
S70

U.S. Patent May 3, 2016 Sheet 6 of 7 US 9,330,035 B2

Is
interrupt controller in
a forwarding mode of
operation ?

580

Route incoming interrupt to Route incoming interrupt to
interrupt handling software interrupt handling software
running at non-secure EL1 running at non-secure EL2

5 <
S90 S100

Generate virtual interrupt at

non-secure EL2 and forward

to interrupt handling software
running at non-secure EL1

k\
S110
FIG. 6

US 9,330,035 B2

Sheet 7 of 7

May 3, 2016

U.S. Patent

L Ol

€13

[~
e

== 0I4'd0S

om /

ydnuju §19
%% 1 == SNHOS
2% 0==04140S

7 1dnusyul g9

dOLVHINIO

e $19

1dNYY3LNI

“ae_g:_ SNI

0l4
213 sbo shs gNLO
B odl [™._ jonuop ¥,
“Quanoy °
BE BE - wV?v
sbpfSAN 09
paljap $s820y
013 013 A
079 1961€
Jonau ued sydnuisu)]
2In2ag 9IN29G-UON / - DMINOS
= = 9)e}s A)linoas juaiing
(0] (0]

Q)

US 9,330,035 B2

1

METHOD AND APPARATUS FOR
INTERRUPT HANDLING

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of interrupt handling in
data processing systems.

2. Description of the Prior Art

Hypervisor systems are known to run at a variety of difter-
ent execution levels. The execution levels are organised in a
hierarchy, with higher execution levels being given a greater
number of privileges to the data processing system than lower
execution levels. Typically, a particular execution level is able
to perform any action and access any data that a lower execu-
tion level can.

A virtualised system may operate using four execution
levels. User software may execute at the lowest and least
privileged level, EL0. This software may include those appli-
cations run by a user in day-to-day work and software that
does not require any special privileges in order to execute
correctly.

At a next highest level, EL1, an operating system may
execute. Typically, an operating system manages a number of
user applications that run under it at EL.0 and enables access
to hardware resources for user applications. Accordingly, an
operating system executing within ELL1 has an increased
privilege level with respect to EL0 as it is able to access and
control the behaviour of the user applications that run under
ELO.

A hypervisor may run in EL.2. A hypervisor typically con-
trols the number, behaviour, and resource management of a
number of operating systems that execute under EL.1. Since
multiple operating systems may compete for access to hard-
ware resources, the hypervisor must be able to grant or deny
such access requests. Accordingly, the hypervisor runs at the
higher privilege level EL.2 as compared to the operating sys-
tems that run at EL1.

Data processing systems are also known to operate in a
variety of execution modes, such as secure and non-secure
states. By providing a data processing apparatus that can
operate in both a secure and non-secure state, it is possible to
separate the execution of secure operations from those that
are non-secure operations. Furthermore, data that is consid-
ered to be secure can be kept separate from data that is not
secure. Consequently, secure data and secure operations can
be isolated from other data and operations that may be con-
sidered to be insecure. Hence, the security of the system is
preserved. Hypervisor systems may also operate in secure
and non-secure modes. In these instances, each execution
level may operate in one or either of the secure and non-secure
mode.

Switching between the secure and non-secure mode must
be handled at the most secure and privileged execution level
in order to ensure that software executing in the non-secure
mode of operation cannot access data belonging to the secure
mode of operation and in some cases, vice-versa. Thus, an
EL3 level may be provided at which a secure monitor which
controls this switching operates. This EL3 level is the highest
privilege level, whose responsibility is to determine when a
change of mode is required and to effect this required change
of execution mode.

When handling interrupts in a system that runs at a number
of different execution levels, it is necessary to isolate particu-
lar data storage elements that are used during the handling of
the interrupt. For example, a subset of system registers may be
partitioned such that only software running at execution level

30

40

45

55

2

EL1 or above is able to access a first subset of registers, only
software running at execution EL.2 or above is able to access
a second subset of registers, and only software executing at
execution EL3 is able to access a third set of subset registers.
This partitioning may be carried out for both secure and
non-secure modes for operation, where appropriate. Such
isolation ensures that software running at a lower execution
level is not able to interfere with, or affect the execution of
software running at a higher execution level.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is
provided a data processing device comprising: a plurality of
system registers, comprising a set of interrupt handling reg-
isters for controlling handling of an incoming interrupt; pro-
cessing circuitry configured to execute software at a plurality
of execution levels, interrupt controller circuitry configured
to route said incoming interrupt to interrupt handling soft-
ware configured to run at one of said plurality of execution
levels; register access control circuitry configured to dynami-
cally control access to at least some of said interrupt handling
registers in dependence upon said one of said plurality of
execution levels that said incoming interrupt is routed to, such
that interrupt handling software configured to run at said
execution level has access to said at least some of said inter-
rupt handling registers for handling said incoming interrupt,
and such that said interrupt handling software configured to
run at said execution level does not have access to interrupt
handling registers for handling a second incoming interrupt
routed to an interrupt handling software run at a more privi-
leged execution level.

Inaccordance with the above, access to a set of the interrupt
handling registers is dynamically controlled in dependence
on the particular execution level at which an incoming inter-
rupt is routed to. This is in contrast to known systems where
interrupt handling software running at a particular execution
level is only able to access a subset of specific, statically
defined registers and those registers defined for use by any
lower, less privileged execution levels. This restriction on
access was provided to prevent software running at a low level
ofprivilege from interfering with software running at a higher
level of privilege. A consequence of this was that if an inter-
rupt intended for a high execution level was routed to inter-
rupt handling software running at a low execution level, the
interrupt could not normally be handled. Embodiments of the
present invention address this by allowing the access to the set
ofinterrupt handling registers to be dynamically controlled in
dependence upon the execution level of the destination of the
interrupt.

In the system described above, the interrupt handling soft-
ware that runs at a particular execution level can have its
access to the set of registers within the interrupt handling
registers dynamically changed such that a particular incom-
ing interrupt can be handled. Consequently, a degree of flex-
ibility is achieved, since an incoming interrupt can be handled
by interrupt handling software that runs at an arbitrary execu-
tion level. Furthermore, since interrupt handling software
running at each execution level only has access to system
registers relating to incoming interrupts, security of the sys-
tem is preserved. Another advantage of this system is that
software can be made more portable, since there is no require-
ment for interrupt handling software that runs at a particular
execution level to handle a specific interrupt. Instead, any
interrupt can be routed to interrupt handling software running
at a different execution level, where that interrupt can still be
handled. A still further advantage of the above is that it is

US 9,330,035 B2

3

possible to explicitly route interrupts to any one of non-secure
software, a secure operating system, or the secure monitor as
desired. The flexibility of such a system is thereby improved
by increasing the number of options available for handling a
given interrupt.

In some embodiments, the plurality of execution levels
comprises EL0, EL.1, EL.2 and EL3. EL.0 is an execution level
at which a user executes software. EL1 is a higher privileged
execution level in which a guest operating system executes.
EL2 is an execution level at which a hypervisor executes,
which is more privileged than E[.2. EL3 is the most privileged
execution level, where a secure monitor is executed. Note that
each of the guest operating system, hypervisor software, and
secure monitor may include interrupt handling software.

In some embodiments, the access given to the interrupt
handling registers may be solely dependent on which of the
execution levels an incoming interrupt is routed to.

In some embodiments, the data processing circuitry may
further comprise processor mode detection circuitry for
detecting a current execution mode of the processing cir-
cuitry, input circuitry that receives incoming interrupts
intended for a particular interrupt handler that runs at an
intended execution mode and an intended execution level,
and also routing circuitry for routing an incoming interrupt to
interrupt handling software that is configured to run at a
particular execution level.

When the routing circuitry receives an incoming interrupt
that has an intended execution mode that corresponds with the
current execution mode of the processing circuitry, the
incoming interrupt is routed to the interrupt handling soft-
ware running at the intended execution level. Alternatively, if
the routing circuitry receives an incoming interrupt that has
an intended execution mode that does not correspond with the
current execution mode for the processing circuitry, the rout-
ing circuitry routes the incoming interrupt to interrupt han-
dling software that is configured to run at a more privileged
execution level than the intended execution level and may be
the most privileged execution level. In some embodiments,
the incoming interrupt may be routed to interrupt handling
software running at the same execution level at which a secure
monitor runs.

The current and intended execution modes may each be a
secure mode or a non-secure mode. When operating in a
secure mode, the processing circuitry has access to secure
data that is not accessible to said processing circuitry operat-
ing in said non-secure mode. Furthermore, in some embodi-
ments, when the processing circuitry operates in a non-secure
mode, it accesses non-secure data that is not accessible to said
processing circuitry operating in a secure mode.

In some embodiments, the interrupt handling registers
comprise an acknowledgement register. The acknowledge-
ment register indicates that an interrupt is pending. The
acknowledgement register also returns a predefined value to
indicate that the received incoming interrupt has an intended
execution mode that does not correspond with the current
execution mode. Consequently, the predefined value for the
acknowledgement register may be used to indicate that the
incoming interrupt must be routed to interrupt handling soft-
ware running at an execution level that is different to that
originally intended for the incoming interrupt. In some
embodiments, when the acknowledgement register returns
the predefined value, the interrupt handling software running
at the predetermined, more privileged, execution level is con-
figured to change the execution mode of the processing cir-
cuitry and to subsequently cause the routing circuitry to route
the incoming interrupt to interrupt handling software running

10

15

20

25

30

35

40

45

50

55

60

65

4

at the intended execution level, where this interrupt is taken
again and this time the interrupt is fully handled and com-
pletes.

In other embodiments, in response to the acknowledge-
ment register returning a predefined value, the interrupt han-
dling software running at the predetermined execution level
may directly handle the incoming interrupt itself. This may
happen, for example, if it is more efficient for the interrupt
handling software running at execution level EL3 to handle
the incoming interrupt than it is to switch the operating mode
of the processor to allow the intended interrupt handling
software to handle the incoming interrupt.

The process of routing the incoming interrupt may involve
the generation of an interrupt exception, which is subse-
quently forwarded to the interrupt handling software. These
interrupt exceptions are internal to the system and are gener-
ated by the interrupt controller to indicate the occurrence of
interrupts of a given class to the processor. Examples of
interrupt exceptions include FIQ, and IRQ.

In some embodiments, the data processing device gener-
ates virtual interrupts. The interrupt controller circuitry may
be switchable between a first setting and a second setting. In
the first setting, an incoming interrupt is routed to interrupt
handling software that runs at a more privileged execution
level than the intended execution level. A virtual interrupt is
then generated by the interrupt handling software running at
the more privileged execution level and is forwarded to the
interrupt handling software running at the intended (lower)
level. In the second setting, the interrupt controller routes an
incoming interrupt to interrupt handling software that runs at
the intended (lower) execution level. In both settings, the
lower level interrupt handling software is able to handle the
incoming interrupt. However, in the second setting, the
incoming interrupt is sent directly to the intended interrupt
handling software without the need for the more privileged
interrupt handling software to generate a virtual interrupt.
Consequently, the processing load of the higher (more privi-
leged) interrupt handling software is reduced. In some of
these embodiments, the more privileged level may be EL2,
which the hypervisor runs at. In some of these embodiments,
the interrupt handling software running at the more privileged
level and the interrupt handling software running at the less
privileged level may both be configured to execute in a non-
secure mode of operation, as previously defined.

According to a second aspect of the present invention, there
is provided a method of dynamically controlling access to at
least some of a set of interrupt handling registers for handling
an incoming interrupt that is routed to interrupt handling
software running at a destination execution level from a plu-
rality of execution levels, the method comprising the steps of:
determining a destination execution level that said incoming
interrupt is routed to; granting access to said interrupt han-
dling software running at said destination execution level
such that interrupt handling software running at said execu-
tion level has access to said at least some of said interrupt
handling registers for handling said incoming interrupt, and
such that said interrupt handling software running at said
execution level does not have access to interrupt handling
registers for handling a second incoming interrupt routed to
an interrupt handling software running at a more privileged
execution level.

According to a third aspect there is provided a data pro-
cessing device comprising:

a plurality of system registers, comprising a set of interrupt
handling registers for controlling handling of an incoming
interrupt;

US 9,330,035 B2

5

processing means for executing software at a plurality of
execution levels,

interrupt controller means for routing said incoming inter-
rupt to interrupt handling software configured to run at one of
said plurality of execution levels;

register access control means for dynamically controlling
access to at least some of said interrupt handling registers in
dependence upon said one of said plurality of execution levels
that said incoming interrupt is routed to, such that interrupt
handling software configured to run at said execution level
has access to said at least some of said interrupt handling
registers for handling said incoming interrupt, and such that
said interrupt handling software configured to run at said
execution level does not have access to interrupt handling
registers for handling a second incoming interrupt routed to
an interrupt handling software run at a more privileged execu-
tion level.

According to a fourth aspect of the invention there is pro-
vided a device for routing an incoming interrupt to processing
circuitry, said processing circuitry being configured to
execute software at a plurality of execution levels, said device
comprising: processor mode detection circuitry configured to
detect a current execution mode of said processor; and input
circuitry configured to receive said incoming interrupt
intended for an interrupt handler running at an intended
execution mode and at an intended execution level; routing
circuitry configured to route said incoming interrupt to inter-
rupt handling software running at a target execution level,
said routing circuitry being configured to: respond to said
received incoming interrupt having an intended execution
mode that corresponds with said current execution mode of
said processing circuitry to route said incoming interrupt to
interrupt handling software running at said intended execu-
tion level; and respond to said received incoming interrupt
having an intended execution mode that does not correspond
with said current execution mode of said processing circuitry,
to route said incoming interrupt to interrupt handling soft-
ware running at a predetermined execution level that is more
privileged than said intended execution level.

In accordance with this aspect, if an incoming interrupt is
intended to be executed in a mode of operation that the pro-
cessing circuitry is not currently operating in, then the incom-
ing interrupt is promoted. The promotion of an interrupt
causes it to be handled by interrupt handling software that
operates at a higher execution level than the interrupt would
ordinarily be handled at. This may lead to the processing
circuitry switching execution mode to the mode required by
the incoming interrupt, thereby allowing the incoming inter-
rupt to be handled as originally intended. Alternatively, the
interrupt handling software may directly handle the incoming
interrupt itself regardless of the execution mode of the pro-
cessing circuitry, and without switching the mode of the pro-
cessing circuitry.

According to a fifth aspect of the present invention, there is
provided a method of routing an incoming interrupt to pro-
cessing circuitry, said processing circuitry being configured
to execute software at a plurality of execution levels, said
method comprising the steps of: detecting a current execution
mode of said processor; and receiving said incoming interrupt
intended for an interrupt handler running at an intended
execution mode and at an intended execution level; routing
said incoming interrupt to interrupt handling software run-
ning at a target execution level, by: responding to said
received incoming interrupt having an intended execution
mode that corresponds with said current execution mode of
said processing circuitry to route said incoming interrupt to
interrupt handling software running at said intended execu-

5

10

15

20

25

30

35

40

45

50

55

60

6

tion level; and responding to said received incoming interrupt
having an intended execution mode that does not correspond
with said current execution mode of said processing circuitry,
to route said incoming interrupt to interrupt handling soft-
ware running at a predetermined execution level that is more
privileged than said intended execution level.

According to a further aspect, there may also be provided a
computer program for controlling a processing apparatus to
perform one of the aforementioned methods of the second or
fourth aspect of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram schematically illustrating a data
processing device according to one embodiment;

FIG. 2 schematically illustrates the operation of an inter-
rupt controller in a data processing device according to one
embodiment;

FIGS. 3A and 3B schematically show the operation of an
interrupt controller in a data processing device switching
between two modes of operation in accordance with one
embodiment;

FIG. 4 is a flow diagram illustrating the operation of a data
processing device in accordance with one embodiment;

FIG. 5 is a flow diagram illustrating the operation of a data
processing device “promoting” an incoming interrupt in
accordance with one embodiment;

FIG. 6 is a flow diagram illustrating the operation of a data
processing device switching between two modes of operation
for generating or not generating virtual interrupts in response
to incoming interrupts in accordance with one embodiment;
and

FIG. 7 schematically shows a system operating in accor-
dance with one embodiment;

DESCRIPTION OF EMBODIMENTS

The embodiments described herein consider a system in
which a processor can be made to execute at a variety of
execution levels (ELO0-EL3). ELO is the least privileged
execution level and EL3 is the most privileged execution
level. Software running at a higher execution level is gener-
ally able to access data used by a lower execution level.
However, data used by a higher execution level cannot gen-
erally be accessed by software executing at a lower execution
level.

User software executes at execution level EL0, guest oper-
ating systems execute at EL1, hypervisor software runs at
execution level EL2, and a secure monitor runs at execution
level EL3.

The secure monitor is able to control whether processor 30
executes in a secure mode or a non-secure mode. While the
processor is in a non-secure mode, it cannot access secure
data. It should also be noted that, in this embodiment, there is
no secure mode of operation for execution level EL.2 and there
is no non-secure mode of operation for execution level EL3.

Execution level EL3 can access both secure and non-secure
data and controls the switching between the two states.

Incoming interrupts may be categorised into a number of
classes depending on their nature and purpose. In the embodi-
ments described herein, three distinct categories are consid-
ered.

G0 or group0 interrupts are intended for the secure monitor
that operates at EL3.

Glns or groupl non-secure interrupts are intended for
either the hypervisor running in non-secure mode at EL.2 or
for an operating system running in non-secure mode at EL1.

US 9,330,035 B2

7

G1s or groupl secure interrupts are intended for a secure
operating system that runs at EL1.

The incoming interrupts are signalled to the processor by
an interrupt controller by issuing one of two interrupt excep-
tions: FIQ and IRQ.

FIG. 1 shows a block diagram illustrating an embodiment
of a data processing device. An incoming interrupt 10 is
received by interrupt controller 20. In this embodiment,
incoming interrupt 10 is of the category G0, and so is intended
for the secure monitor operating at execution level EL.3 on
processor 30. However, in this embodiment as a consequence
of'values stored in control registers 40 the incoming interrupt
10 is instead routed to interrupt handling software running at
execution level EL1 on processor 30.

In the normal course of events, interrupt handling software
running at execution level EL1 on processor 30 would have
access to a particular subset of registers 60 in the set of system
registers 50. In order for the incoming interrupt 10 to be
handled, it is necessary to have access to a different, second
set of system registers 70. This second set of registers may
include, for example, registers that are used to signal that a
particular exception is pending or complete, such as an
acknowledgement register. Ordinarily, therefore, the inter-
rupt handling software running at execution level EL1 on
processor 30 would not have access to the second set of
system registers 70 that are necessary to handling the incom-
ing interrupt 10.

However, in this embodiment, the way in which an incom-
ing interrupt 10 is routed to interrupt handling software
depends on one or both of the configuration of control regis-
ters 40 and the current execution mode (secure or non-secure)
of the processor 30.

In particular, a first secure control register SCR indicates,
for each of the interrupt exceptions FIQ and IRQ, whether or
not that interrupt exception is routed to interrupt handling
software running at EL3.

If'the interrupt exception is not routed to interrupt handling
software running at EL.3 and if the processor is running in a
secure mode, then the interrupt exception is sent to interrupt
handling software running in a secure mode at EL.1, since
EL2 has no secure-mode.

If'the interrupt exception is not routed to interrupt handling
software running at EL.3 and the processor is running in a
non-secure mode, then the interrupt exception is routed to
interrupt handling software running in a non-secure mode at
EL1 or EL2, depending on the value indicated by a second
hypervisor control register, HCR. As with the register SCR, it
is possible to set a different value for each interrupt exception.

The configuration of the control registers 40 may be con-
trolled by software executing on the processor 30. For
example, the values set for SCR may be set by the secure
monitor running at EL.3—thereby enabling the secure moni-
tor to defer handling of a particular interrupt exception to
interrupt handling software running at a lower execution
level. Similarly, whether a particular interrupt exception is
handled by the hypervisor running at EL.2 or the guest oper-
ating system running at EL.1 may be specified by the hyper-
visor. Accordingly, the flexibility of such a system is
improved, by enabling software at various different execution
levels to handle an incoming interrupt by setting particular
values in the control registers.

In this example, register access control 80 grants the inter-
rupt handling software running in the secure mode of opera-
tion at execution level EL1 access to the second (additional)
set of system registers 70 in the set of system registers 50.

10

15

20

25

30

35

40

45

50

55

60

65

8

Hence, the interrupt handling software running in the secure
mode of operation at execution level ELL1 is able to handle the
incoming interrupt 10.

Consequently, it can be seen that the access granted to the
interrupt handling software running in the secure mode at
execution level ELL1 on processor 30 is dependent on the
routing carried out by interrupt controller 20, which in turn
may depend on the values of the control registers 40. The
change in access to the system registers 50 results in the
interrupt handling software running in the secure mode at
execution level EL1 in processor 30 being able to handle the
incoming interrupt 10. Hence, the access given to interrupt
handling software that runs at each execution level of the
processor 30 is dynamically determined, thereby enabling an
incoming interrupt to be handled at a plurality of different
execution levels. Phrased differently, interrupt handling soft-
ware running at a particular execution level does not only
have access to a fixed set of system registers 50. Instead, the
access of that interrupt handling software to the system reg-
isters 50 is changed depending on the routing of incoming
interrupts to the different execution levels.

Furthermore, although the access granted to the interrupt
handling software running in secure mode at execution level
EL1 on processor 30 is adjusted, there is no requirement that
access to any of the other interrupt handling software at any
other execution mode or execution level be adjusted. In par-
ticular, although the interrupt handling software running in
the secure mode at execution level EL2 does run at a higher
level of execution than the interrupt handling software run-
ning at execution level EL1, there is no need for the access of
interrupt software at execution level EL2 to be adjusted.

FIG. 2 shows an embodiment in which a data processing
device includes an interrupt controller 20 that promotes an
incoming interrupt 10. Incoming interrupt 10 is received by
input circuitry 100 in the interrupt controller 20 and is of
category G18S, indicating that the interrupt is intended to be
handled by a secure operating system running at secure EL1.
Acknowledgement register 90 in the set of system registers 50
indicates that incoming interrupt 10 is pending and also (in
this embodiment) that the current execution mode of the
processor 30 does not match the mode required by the incom-
ing interrupt 10. In this example, the incoming interrupt 10
requires a secure mode of operation, which is not compatible
with the processor 30 being in a non-secure mode of opera-
tion. The fact that the incoming interrupt 10 is not in the
correct mode of operation is made available to the interrupt
controller 20.

The acknowledgement register is read from the interrupt
handling software and the value that is returned is either a
valid interrupt ID for the current regime or a special identifier
which is one of a value indicating whether there is a pending
interrupt for the secure state, a pending interrupt for the
non-secure state or no longer any pending interrupt. The
return of a no longer pending interrupt may occur where the
processor is not executing at a high enough level to take or
indeed see the pending interrupt or where the pending inter-
rupt has been taken and is no longer pending for some reason.

Ordinarily, the arrival of an incoming interrupt 10 at the
interrupt controller 20 would result in the generation of an
interrupt exception IRQ, which would be sent to the interrupt
handling software running at execution level EL1 in a secure
mode of operation. However, since, in this example, the pro-
cessor 30 is currently not operating in a secure mode of
operation, it is not possible for this interrupt exception to be
handled at this time. Accordingly, the routing circuitry 110 in
the interrupt controller 20 causes the incoming interrupt 10 to
be “promoted” by generating an interrupt exception FIQ,

US 9,330,035 B2

9

which is routed to the interrupt handling software running in
a secure mode of operation at execution level EL3 on the
processor 30.

In this embodiment, the interrupt handling software run-
ning in a secure mode at execution level EL3 is always able to
immediately respond to an internal FIQ interrupt. Accord-
ingly, the interrupt handling software at a more privileged
execution level than was intended by the incoming interrupt
10 can be made to react to the interrupt controller 20 receiving
an incoming interrupt 10 that is not compatible with the
processor’s current mode of operation.

In some embodiments, the interrupt handling software run-
ning at execution level EL3 will react by changing the mode
of'the processor 30 by saving the state of any software that is
executing in the secure mode of operation, flushing certain
caches or intermediate storage mediums and then switching
the mode of the processor. This process can be time consum-
ing when handling a simple interrupt. Consequently, in some
circumstances, the interrupt handling software running at
execution level EL.3 may instead handle the incoming inter-
rupt itself. In such circumstances, there is no need for the
interrupt handling software to change the mode of the pro-
cessor 30 between the secure mode and the non-secure mode.

The skilled person will recognise that there are a number of
different conditions that will dictate whether the interrupt
handling software running at execution level EL3 causes the
mode of the processor 30 to be changed between the secure
and non-secure mode, or whether the interrupt handling soft-
ware running at execution level EL3 handles the interrupt
itself. For example, such a decision may be made based on the
importance of the incoming interrupt, the execution level that
is currently operating on the processor, or the complexity of
the incoming interrupt. In particular, if the processor was
previously running at a low execution level, if the incoming
interruptis particularly complicated and not of critical impor-
tance, then the processor 30 may change mode between the
secure and non-secure mode.

FIGS. 3A and 3B show the process of switching the mode
of the interrupt controller between a first setting shown in
FIG. 3A and a second setting shown in FIG. 3B.

In FIG. 3A the incoming interrupt 10 is received by inter-
rupt controller 20 and forwarded as an interrupt exception
IRQ to interrupt handling software running in a non-secure
mode at execution level EL1 on the processor 30.

In FIG. 3B, the incoming interrupt 10 is received by inter-
rupt controller 20 and again forwarded as an interrupt excep-
tion IRQ. However, in this embodiment, the interrupt excep-
tion IRQ is received by interrupt handling software running in
anon-secure mode at execution level EL2. A virtual interrupt
is then generated by the interrupt handling software running
in a non-secure mode at execution level EL.2 and forwarded to
the interrupt handling software running in a non-secure mode
at execution level EL1. In this embodiment the virtual inter-
rupt that is generated must by definition be a group 1 non-
secure interrupt going either to the hypervisor or the guest OS
as in this embodiment there is no secure EL2.

The two settings make it possible to affect whether inter-
rupt handling software running in a non-secure mode at
execution level EL1 has physical access to an incoming inter-
rupt 10, or whether interrupt handling software running in a
non-secure mode at a more privileged execution level EL.2
has physical access to the incoming interrupt 10 and the
interrupt handling software running in a non-secure mode at
execution level EL1 only has virtual access to an incoming
interrupt 10.

For example, an incoming interrupt 10 produced by a piece
of hardware may be directly handled by a guest operating

25

30

35

40

45

50

65

10

system running at execution level EL1, in which case, the
guest operating system has physical access to the incoming
interrupt 10 with no intermediate steps required.

Alternatively, such an interrupt could be directed towards
hypervisor software running at execution level EL2, resulting
in a virtual interrupt being generated by the hypervisor soft-
ware and routed to the guest operating system running at
execution level EL1. In this case, the guest operating system
only has virtual access to the incoming interrupt 10 and access
to that interrupt is ultimately controlled by the hypervisor
software running at execution level EL.2. This process may be
necessary where different pieces of software may compete for
ormay be untrusted to directly access the hardware. However,
the process of generating the virtual interrupt is likely to
consume additional processing resources compared to the
scenario in which the guest operating system has physical
access to the incoming interrupt 10.

The interrupt controller 20 may be switched between these
two settings according to the values returned by registers in
the set of control registers 40. As previously discussed, when
the processor 30 is running in a non-secure mode of opera-
tion, and if an interrupt exception is not being routed to EL3,
the value of the register HCR may be used to indicate whether
the interrupt exception is to be routed to EL1 or EL2. In
addition, this register indicates whether or not the interrupt
handling software that receives the interrupt exception should
generate a virtual interrupt and forward that virtual interrupt
to the interrupt handling software running in a non-secure
mode at execution level EL1. Generating a virtual interrupt
for handling by software running at a less privileged execu-
tion level may be processor intensive. Since interrupts that are
ultimately handled by the interrupt handling software running
at a lower level must be reproduced in the form of a virtual
interrupt by the more privileged interrupt handling software.
However, creating virtual interrupts allows a less privileged
interrupt handler to handle an interrupt without expanding the
privileges ofthe software running at the less privileged execu-
tion level. Thus, the hypervisor will set the values in the
control registers 40 in dependence upon security versus per-
formance requirements, which will change with the particular
software that is being executed at the EL1 level.

The table below indicates, for an interrupt exception IRQ,
the effect of different register values and processor modes on
the routing of an incoming interrupt.

EL IRQ
interrupt is
routed to and

Processor physical state is EL1 and EL2
mode SCR.IRQ HCR.IRQ accessible at behaviour
Secure 0 Irrelevant EL1 (Secure)
Non-secure 0 0 EL1 (Non-
secure)
Non-secure 0 1 EL2 (Non- EL1 accesses
secure) control virtual
interrupts
Secure 1 Irrelevant EL3 (Secure) ELI1 access not
permitted
Non-secure 1 0 EL3 (Secure) EL1 and EL2
access not
permitted
Non-secure 1 1 EL3 (Secure) ELI accesses

control virtual
interrupts

EL2 access not
permitted

It should be noted that the secure control register SCR and
the hypervisor control register HCR both comprise the bit

US 9,330,035 B2

11

shown above which controls the routing of an IRQ and
another one (not shown in this table) that controls the routing
of an FIQ. The control bit for FIQ interrupts SCR.FIQ, or
HCR FIQ controls the routing for group0 interrupts and the
one for IRQ interrupts SCR.IRQ or HCR.IRQ defines how
groupl both secure and non-secure interrupts are routed. This
segmentation is possible as an IRQ can where required be
promoted to an FIQ. As already mentioned, these settings can
be set independently for both IRQ and FIQ interrupt excep-
tions.

Accordingly it is possible to dynamically switch between
the two modes and thereby dynamically aftect whether an
incoming interrupt 10 is handled by intermediate parties or
directly routed to the relevant software running at the correct
execution level.

FIG. 4 is a flow diagram illustrating the operation of a data
processing device in accordance with one embodiment.

In step S10 it is determined what execution level an incom-
ing interrupt 10 (such as is shown in FIG. 1 or 2) is to be routed
to. Such a determination may be made from a combination of
values returned by registers in the set of control registers 40
and the type of the incoming interrupt 10.

At step S20, access is dynamically granted to interrupt
handling software running at the execution level to which the
incoming interrupt 10 is to be routed to, such that the interrupt
handling software is able to handle the incoming interrupt 10.

In accordance with the above, the access granted to inter-
rupt handling software is not statically determined That is,
interrupt handling software running at each execution level
does not have access to a fixed, i.e. static, set of registers in the
set of system registers 50. Instead, the set of registers in the
system registers 50 to which interrupt handling software has
access is determined based on the routing of an incoming
interrupt.

FIG. 5 is a flow diagram illustrating the operation of a data
processing device promoting an incoming interrupt 10 (such
as is shown in FIG. 1) in accordance with one embodiment.

In step S30, an incoming interrupt 10 is received by the
interrupt controller 20.

In step S40, the current execution mode for processor 30 is
determined.

In step S50, it is determined whether the current execution
mode of the processor 30 is the same as the intended execu-
tion mode of the incoming interrupt 10. This determination
may be made as a result of reading acknowledgement register
90 in the system registers 50, for example.

If the current execution mode and the intended execution
mode are the same, then operation proceeds to step S60 in
which the incoming interrupt 10 is forwarded to the intended
interrupt handler.

Alternatively, if the intended execution mode and current
execution mode differ, then the incoming interrupt 10 is
routed to interrupt handling software running at execution
level EL3.

The interrupt handling software running at execution level
EL3 may be, for example, a secure monitor. In this embodi-
ment, the secure monitor running at execution level EL3
directly handles the interrupt itself. However, in other
embodiments the secure monitor may cause the current
execution mode for the processor 30 to be switched. For
example, the execution mode of the processor 30 may be
switched from a secure mode to a non-secure mode or vice-
versa, such that the execution mode of the processor 30
matches the intended execution mode of the incoming inter-
rupt 10.

Accordingly, an incoming interrupt 10 that requires an
execution mode that the processor 30 is currently providing

10

15

20

25

30

35

40

45

50

55

60

65

12

can immediately be forwarded to the relevant interrupt han-
dling software. However, if the processor 30 is not running in
the relevant execution mode, a “promotion” occurs, causing
the incoming interrupt to be routed to the most privileged
execution level. Here, the incoming interrupt 10 can either be
immediately handled or the mode of the processor switched
such that the incoming interrupt 10 can be forwarded to the
originally intended interrupt handling software.

FIG. 6 is a flow diagram illustrating the operation of a data
processing device generating virtual interrupts in accordance
with one embodiment.

In step S80, it is determined whether the interrupt control-
ler 20 is in a forwarding mode of operation. In a forwarding
mode of operation, the interrupt controller 20 is configured to
directly forward an incoming interrupt 10 (such as is shown in
FIG. 1 or 2) to the appropriate execution level, thereby grant-
ing the interrupt handling software at the appropriate execu-
tion level physical access to the incoming interrupt 10. The
mode of operation may be determined as a result of the value
returned by, e.g. an acknowledgement register 90 in the set of
control registers 40.

If the interrupt controller 20 is in a forwarding mode of
operation, then at step S90, the incoming interrupt 10 is
directly routed towards handling software running in a non-
secure mode of operation at execution level EL1.

Alternatively, if the interrupt controller 20 is not in a for-
warding mode of operation, then at step S100, the incoming
interrupt is routed towards interrupt handling software run-
ning in a non-secure mode of operation at execution level
EL2. Subsequently, at step S110, a virtual interrupt is gener-
ated by the software running at the non-secure execution level
EL2, and forwarded to the interrupt handling software run-
ning at non-secure execution level EL1.

In accordance with the above, it is possible to switch the
mode of operation of the interrupt controller 20 between a
first setting in which an incoming interrupt 10 is directly
forwarded towards interrupt handling software running at a
particular execution level, and a second setting in which the
incoming interrupt 10 is forwarded to a more privileged
execution level and a virtual is generated by the interrupt
handling software at that more privileged execution level and
sent to the interrupt handling software running at the lower
level of privilege. Thus, it is possible for interrupt handling
software to either have physical access to an incoming inter-
rupt 10, or to have virtual access to that incoming interrupt.

FIG. 7 schematically shows an example embodiment in
which incoming interrupts are generated and sent to routing
circuitry 110. There, the incoming interrupts are used to gen-
erate interrupt exceptions FIQ/IRQ as required. These inter-
rupt exceptions are sent to processor 30. In particular, the
interrupt exceptions are sent to interrupt handling software
running at one of the execution levels in one of the execution
modes (secure or non-secure) depending on the nature of the
interrupt exception. FIG. 7 shows that, depending on the
values indicated by registers SCR for IRQ and FIQ interrupt
exceptions, and depending on the current operating state of
the processor 30, which is represented as being in a non-
secure mode when SCR__ NS is 1 and a secure mode SCR__
NS is 0, interrupts of different categories are sent to different
interrupt handling software running at different exception
levels. In this regard secure control register SCR stores a bit
SCR.FIQ for controlling FIQ interrupts, a bit SCR.IRQ for
controlling IRQ interrupts and a bit SCR.NS indicating the
current mode of the processor, that is secure or non-secure
mode.

US 9,330,035 B2

13

In particular, in this example since SCR.FIQ is set to 1 for
FIQ interrupt exceptions, the GO interrupt, which generates
an FIQ interrupt exception, is routed to EL3.

Furthermore, since SCR.IRQ is 0 for IRQ, and since the
processor is presently in a non-secure mode of operation
(SCR.NS=1), the G1s interrupt is “promoted”, causing an
FIQ interrupt to be generated and sent to EL.3. Conversely, a
Glns interrupt causes an IRQ interrupt to be sent to interrupt
handling software running at execution level EL.2 because the
processor is running in the required mode (i.e. non-secure).

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom-
panying drawings, it is to be understood that the invention is
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit of
the invention as defined by the appended claims.

We claim:

1. A data processing device comprising:

aplurality of system registers, comprising a set of interrupt

handling registers for controlling handling of an incom-
ing interrupt;

processing circuitry configured to execute software at a

plurality of execution levels,
interrupt controller circuitry configured to route said
incoming interrupt to interrupt handling software con-
figured to run at one of said plurality of execution levels;

register access control circuitry configured to dynamically
control access to at least some of said interrupt handling
registers in dependence upon said one of said plurality of
execution levels at which said interrupt handling soft-
ware is configured to run, such that interrupt handling
software configured to run at said execution level has
access to said at least some of said interrupt handling
registers for handling said incoming interrupt, and such
that said interrupt handling software configured to run at
said execution level does not have access to interrupt
handling registers for handling a second incoming inter-
rupt routed to an interrupt handling software run at a
more privileged execution level.

2. The data processing device according to claim 1,
wherein said plurality of execution levels comprise ELO,
EL1, EL2, and EL3;

EL0 is an execution level at which user software executes

and is less privileged than EL.1;

EL1 is an execution level at which a guest operating system

executes and is less privileged than EL.2;

EL2 is an execution level at which a hypervisor executes

and is less privileged than EL.3; and

EL3 is an execution level at which a secure monitor

executes.
3. The data processing device according to claim 1,
wherein
said register access control circuitry configured to dynami-
cally control access to at least some of said interrupt
handling registers in dependence solely upon said one of
said plurality of execution levels at which said interrupt
handling software is configured to run.
4. The data processing device according to claim 1, said
interrupt controller circuitry further comprising:
processor mode detection circuitry configured to detect a
current execution mode of said processing circuitry;

input circuitry configured to receive said incoming inter-
rupt intended for an interrupt handler configured to run
at an intended execution mode and at an intended execu-
tion level,

20

25

30

35

40

45

50

60

14

routing circuitry configured to route said incoming inter-
rupt to interrupt handling software configured to run at a
target execution level, said routing circuitry being con-
figured to:
respond to said received incoming interrupt having an
intended execution mode that corresponds with said
current execution mode of said processing circuitry to
route said incoming interrupt to interrupt handling
software configured to run at said intended execution
level; and
respond to said received incoming interrupt having an
intended execution mode that does not correspond
with said current execution mode of said processing
circuitry, to route said incoming interrupt to interrupt
handling software configured to run at a predeter-
mined execution level that is more privileged than
said intended execution level.
5. The data processing device according to claim 4,
wherein
said current execution mode and said intended execution
mode are each one of a secure mode or a non-secure
mode, said processing circuitry operating in said secure
mode having access to secure data that is not accessible
to said processing circuitry operating in said non-secure
mode.
6. The data processing device according to claim 4,
wherein
said predetermined execution level that is more privileged
than said intended execution level is a most privileged
execution level.
7. The data processing device according to claim 4,
wherein
said predetermined execution level that is more privileged
than said intended execution level is EL3 and is an
execution level at which a secure monitor runs.
8. The data processing device according to claim 4,
wherein
said processor mode detection circuitry comprises an
acknowledgement register in said interrupt handling
registers; and
said acknowledgement register is configured to indicate
that a received incoming interrupt is pending and to
return a predefined value to indicate that said received
incoming interrupt has an intended execution mode that
does not correspond with said current execution mode.
9. The data processing device according to claim 8,
wherein
said interrupt handling software that is configured to run at
a predetermined execution level that is more privileged
than said intended execution level, is further configured
to respond to said acknowledgement register returning
said predefined value by changing said execution mode
of said processing circuitry and to subsequently cause
said routing circuitry to route said incoming interrupt to
interrupt handling software configured to run at said
intended execution level.
10. The data processing device according to claim 8,
wherein
said interrupt handling software that is configured to run at
a predetermined execution level that is more privileged
than said intended execution level, is further configured
to respond to said acknowledgement register returning
said predefined value by handling said incoming inter-
rupt.
11. The data processing device according to claim 4,
wherein

US 9,330,035 B2

15

said routing circuitry is configured to route said incoming
interrupt to interrupt handling software configured to
run at said intended execution level and to route said
incoming interrupt to interrupt handling software con-
figured to run at a predetermined execution level that is
more privileged than said intended execution level by
generating an interrupt exception and forwarding said
interrupt exception to at least one of said interrupt han-
dling software configured to run at said intended execu-
tion level and said interrupt handling software config-
ured to run at a predetermined execution level that is
more privileged than said intended execution level.
12. The data processing device according to claim 1,
wherein
said interrupt controller circuitry is switchable between a
first setting, in which:
said interrupt controller routes incoming interrupts to
interrupt handling software configured to run at a
predetermined execution level,
and a second setting, in which:
said interrupt controller does not route incoming inter-
rupts to said interrupt handling software configured to
run at said predetermined execution level,
said at least one incoming interrupt is routed to interrupt
handling software configured to run at a more privi-
leged execution level than said predetermined execu-
tion level,
at least one virtual interrupt is generated by interrupt
handling software configured to run at said more
privileged execution level than said predetermined
execution level,
and said at least one virtual interrupt is routed to said
interrupt handling software configured to run at said
predetermined execution level.
13. The data processing device according to claim 12,
wherein
said more privileged execution level than said predeter-
mined execution level is EL.2, execution level EL.2 being
a level at which a hypervisor runs.
14. The data processing device according to claim 12,
wherein
said interrupt handling software configured to run at a
predetermined execution level and said interrupt han-
dling software configured to run at a more privileged
execution level each execute in a secure mode of opera-
tion on said processing circuitry, said processing cir-
cuitry operating in said secure mode having access to
secure data that is not accessible to said processing cir-
cuitry operating in a non-secure mode and said process-
ing circuitry operating in said non-secure mode having
access to non-secure data that is not accessible to said
processing circuitry operating in said secure mode.
15. A data processing device comprising:
aplurality of system registers, comprising a set of interrupt
handling registers for controlling handling of an incom-
ing interrupt;
means for executing software at a plurality of execution
levels;
means for routing said incoming interrupt to interrupt han-
dling software configured to run at one of said plurality
of execution levels; and
means for dynamically controlling access to at least some
of said interrupt handling registers in dependence upon
said one of said plurality of execution levels at which
said interrupt handling software is configured to run,
such that interrupt handling software configured to run
at said execution level has access to said at least some of

20

25

40

45

60

65

16

said interrupt handling registers for handling said
incoming interrupt, and such that said interrupt handling
software configured to run at said execution level does
not have access to interrupt handling registers for han-
dling a second incoming interrupt routed to an interrupt
handling software run at a more privileged execution
level.
16. A method of dynamically controlling access to at least
some of a set of interrupt handling registers for handling an
incoming interrupt that is routed to interrupt handling soft-
ware configured to run at a destination execution level from a
plurality of execution levels, the method comprising the steps
of:
determining a destination execution level at which said
interrupt handling software is configured to run;

granting access to said interrupt handling software config-
ured to run at said destination execution level such that
interrupt handling software configured to run at said
execution level has access to said at least some of said
interrupt handling registers for handling said incoming
interrupt, and such that said interrupt handling software
configured to run at said execution level does not have
access to interrupt handling registers for handling a sec-
ond incoming interrupt routed to an interrupt handling
software configured to run at a more privileged execu-
tion level.
17. A non-transitory computer-readable storage medium
storing program instructions, which when executed on a pro-
cessing apparatus, cause the processing apparatus to perform
the method according to claim 16.
18. A device for routing an incoming interrupt to process-
ing circuitry, said processing circuitry being configured to
execute software at a plurality of execution levels, said device
comprising:
processor mode detection circuitry configured to detect a
current execution mode of said processing circuitry; and

input circuitry configured to receive said incoming inter-
rupt intended for an interrupt handler configured to run
at an intended execution mode and at an intended execu-
tion level,

routing circuitry configured to route said incoming inter-

rupt to interrupt handling software configured to run at a

target execution level, said routing circuitry being con-

figured to:

respond to said received incoming interrupt having an
intended execution mode that corresponds with said
current execution mode of said processing circuitry to
route said incoming interrupt to interrupt handling
software configured to run at said intended execution
level; and

respond to said received incoming interrupt having an
intended execution mode that does not correspond
with said current execution mode of said processing
circuitry, to route said incoming interrupt to interrupt
handling software configured to run at a predeter-
mined execution level that is more privileged than
said intended execution level.

19. A method of routing an incoming interrupt to process-
ing circuitry, said processing circuitry being configured to
execute software at a plurality of execution levels, said
method comprising the steps of:

detecting a current execution mode of said processing cir-

cuitry; and

receiving said incoming interrupt intended for an interrupt

handler configured to run at an intended execution mode
and at an intended execution level,

US 9,330,035 B2

17

routing said incoming interrupt to interrupt handling soft-

ware configured to run at a target execution level, by:

responding to said received incoming interrupt having
an intended execution mode that corresponds with
said current execution mode of said processing cir-
cuitry to route said incoming interrupt to interrupt
handling software configured to run at said intended
execution level; and

responding to said received incoming interrupt having
an intended execution mode that does not correspond
with said current execution mode of said processing
circuitry, to route said incoming interrupt to interrupt
handling software configured to run at a predeter-
mined execution level that is more privileged than
said intended execution level.

20. A non-transitory computer-readable storage medium
storing program instructions, which when executed on a pro-
cessing apparatus, cause the processing apparatus to perform
the method according to claim 19.

#* #* #* #* #*

10

15

20

18

